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Packing-limited growth of irregular objects
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We study growth limited by packing for irregular objects in two dimensions. We generate packings by
seeding objects randomly in time and space and allowing each object to grow until it collides with another
object. The objects we consider allow us to investigate the separate effects of anisotropy and nonunit aspect
ratio. By means of a connection to the decay of pore-space volume, we measure power law exponents for the
object size distribution. We carry out a scaling analysis, showing that it provides an upper bound for the size
distribution exponent. We find that while the details of the growth mechanism are irrelevant, the exponent is
strongly shape dependent. Potential applications lie in ecological and biological environments where sessile
organisms compete for limited space as they grow.
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[. INTRODUCTION and outline our algorithm for packing rectangles in
Appendix B.

In a previous worK 1], we examined packings formed by
spheres growing ind dimensions, immediately stopping

upon contact with another sphere. We termed this to be II. IRREGULAR OBJECTS CONSIDERED
packing-limited growth. Here, we address the question of o ) S
what happens when we consider irreguia., nonspherical The building block shape of the objects we consider is the

Objects of similar Shape growing id=2 dimensions. We rectangle. We denote the aSpect ratimadeﬁning all rect-
focus in particular on collisions of growing rectangles. By angles such tha=1. We record rectangle sizeas half the
combining rectangles, we are able to form and examine &ngth of the long side, the dimensions then beimgaad
range of shapes whose growth patterns vary broadly in radidr/a. Examples of each object are provided in the packings
anisotropy. Whereas in Rdfl] we found universality classes of Figs. 1 and 2.
depending only on dimensiod, we find here that marked Fora=1, we have squares and as-, rectangles ef-
nonuniversal behavior arises when shapes are varied. fectively become line segments and the packing becomes
Our problem finds several motivations. First, this is a rela-one of fittingd=1 objects into ad=2 volume. Rectangles
tively unexplored kind of packing. Packings are generallyafford a basic example of anisotropic growth since the long
static or randomly generatd@]: physical mechanisms are side grows at a rate slower than the short side by a factor of
only seldomly connected with the creation of packipgg. 1/a. The growing square is distinguished from the rectangle
Furthermore, packings are typically of monodisperse objectsince the former expands uniformly perpendicular to its
of the same form or taken from a small set of forfds6]. = edges. However, in comparison to disks, the growth rate of
From a physical point of view, two-dimensional packings ofedge points relative to the center of both squares and rect-
growing objects may be of use in modeling or understandingngles is nonuniform.
certain biological and ecological patterns. We consider the The simplest combination of two rectangles is a cross
geometric approach presented here as a preliminary step toFigs. 4a) and 2b)] and a natural generalization is the
wards describing how shape alters the size distributions a2n-spoke objecfwith n=1 being a rectangle anu=2 be-
populations. ing a cross, see Fig(®]. Each h-spoke object is then part
In Sec. Il we describe the various objects we construcbf a family of shapes indexed
from rectangles. Although not all of these objects have obvi- The last object we consider is an eight-pointed star as
ous physical parallels, they present a range of typologicashown in Fig. 2d). This object is formed by two squares
cases from which direct applications and comparisons magverlaid at an angle ofr/4 to each other.
be sought. In Sec. Ill, we provide a scaling analysis that All objects are packed using the approach of Mafifja
empirically appears to be exact fd=4 in the case of hy- objects are added sequentially and allowed to instantly grow
persphere§l] (details of the calculations for this section are so as to just reach the existing packing structure. We have
given in Appendix A. We report the results of our numerical observed and argudd] that the values of the size distribu-
investigations in Sec. IV along with a discussion of the fail-tion exponent and all other related exponents are indepen-
ings of the scaling theory. We conclude the paper in Sec. \dent of the growth dynamic.
In the context of packing, spheres make for straightfor-

ward calculations since the contact point between any two
*Electronic address: peter.dodds@columbia.edu colliding spheres occurs along the line through their centers.
"Electronic address: jsweitz@segovia.mit.edu Rectangles constitute a relatively simple generalization of
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FIG. 1. Rectangle packings of the unit square for varying aspect aatieeated using the packing-limited growth mechanism. Each
packing consists of 1000 rectangles with periodic boundary conditions being imposed. The aspect ratios corresponding to the packings are
(@ a=1, (b) a=3, (c) a=10, and(d) a=100. The first three packings are initialized with four randomly placed and oriented rectangles
with longest side length of 0.25, with eight such rectangles being used in the fourth packing.

spheres from a numerical point of view, hence we use a—1 |
them here. —r, for r<r,
P(r;n)= B [\ -a (1)
rcl() for r=r..
Ill. SCALING THEORY o le

In Ref. [1], we argued that a simple scaling assumptionThe tail of the distribution is fixed and the distribution fills in
may be made regarding the form B{r;n), the distribution  (r. decreases with) with the (n+ 1)th object being chosen
of sphere sizes aftem objects have been packed. We takefrom within the pore space. The size distributiB(r;n) is
P(r;n) to be described by a power law for radii above aconnected to the probability of inserting an object of gize
cutoff valuer . and uniform below: after n objects have been deposite,.((r;n). Since the
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FIG. 2. Packings of irregular objects formed by combinations of rectangles. As per Fig. 1, each packing contains 1000 objects and the
boundary conditions are periodic. (a) and (b), the crosses are formed by two rectangles at right angles with aspectaat®sanda
=10, respectively. Plofc) shows a packing of six-legged stars composed of three rectangles with aspeat=rafio In (d), the packing
object is an eight-pointed star formed by two overlapping squares set at an angk tof each other.

probability of adding a sphere of vanishing radii must be .~ 90+4p
proportional to the total surface area of the existing spheres, a= 30+2p° (3
S(n), we were able to estimate,((r;n) as[1]
S(n) Setting o=27 and p=, we recovera=11/4 for disks.
Ping(r;n)= ®(n)’ Osr=r, (2)  Note that the probability of adding a nonspherical object is

still proportional toS(n) in the limit of r—0, regardless of
whered(n) is the pore space volume. Using E@) to cal-  the object’s shape. For example, it is irrelevant that an added
culate S(n) and ®(n) and requiring thaP;.((r;n) be nor-  square of side lengthr2may be oriented such that its center
malized, we obtained the estimate= 11/4 for disks. is betweerr and/2r away from its point of contact with the
More generally id=2 dimensions, if we now write area €Xisting packing. Also note that s—«, the theoretical
asA=pr? and perimeter ak=oT, we find the scaling ex- prediction tends tax=3, in agreement with a previous de-
ponent to be termination of an upper bound for polydisperse packi&js
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0 — T — TABLE |. Estimates ofa, the exponent of the number distribu-
el p=0.013 tion, P(r)ecr —¢, for irregular objects undergoing packing-limited
g B~=Z).~0~9:1 ________ growth. The results for _disk_s are included for cor_nparigb]:] All
e -0.5 other objects are combinations of rectanglsse Figs. 1 and)2
S with a being the aspect ratio. The exponghis determined from
§° B=0.223 ®(n) and« is subsequently obtained using H¢). Full details of

-1 the method of measuring are given in the text. Each measurement
is for a single packing containing 1®bjects. Measurement errors

0 reflect variation in the approach to a limiting value of the exponents
using the method of Sec. IV. The scaling theory estimate8 afd
4~ «, which are lower and upper bounds, respectively, are calculated
= 3 using Egs(3) and(4), and those given in Appendix A.
Z : . R
=) Object B B a a
=1]
= 1 Disk 0.2781) 0.1429 2.564) 2.750
Square 0.22Q) 0.1429 2.6382) 2.750
95 Rectangle 4=2) 0.2072) 0.1000 2.656) 2.818
loglo r Rectangle 4=5) 0.14%2) 0.0526 2.74) 2.900

Rectangle §=10) 0.0941) 0.0294 2.828) 2.943
FIG. 3. For rectangle packings of 16bjects, plots ofb(n), the Rectangle §=20) 0.05%1) 0.0156 2.892) 2.969
decay of pore space as a function of number of rectangles added Rectangle §=50) 0.02473) 0.0065 2.95Q@) 2.987
andN(r), the frequency of objects of sizefor rectangles. Inboth  Rectangle £100)  0.01261) 0.0033 2.976l) 2.993
plots, the_ rectangles have aspect rgﬁnsl (sc_>|id _Iine), gzlo Cross 6=3) 0.1693) 0.0847 2.71(8) 2.844
(daShe‘fj "”’f ?‘Pd ﬁ‘_: 100 (dOI'gia?h ';\T? )N(r,) is.b'“”ed in "?tgh Cross @=10) 0.0741) 0.0307 2.862) 2.940
space for clarity. The exponemt [in N(r)«r~¢] increases wi
in&;reasing aspe)::t ratia, Iir?ﬂting to 3 asa— . Correspondingly, girfss?)fk:e 1(109)10) 88322 gggiz ;22% ;Zg:

B decreases towards[Bee Eq.(4)]. ) )
Eight-pointed star 0.213) 0.1429 2.6484) 2.750

Details of the calculations finding for the objects we con-
sider here are to be found in Appendix A.

All other exponents depend anvia simple scaling rela-
tions[1]. In particular, the pore volumé(n) decays as #
with the connection betweefi and « being

angles, we see that asincreases, both the observedand

the theoretical estimate increase, while8 and 3 accord-
ingly decrease. Furthermore, for all the shapes considered,

we find thata< & for all finite a. We note that measuring
power law exponents is not a trivial procedure and here we
a=1+ 1+8° (4 take some care to ensure the validity of our results. While
simple regression is the basic tool of analysis, the presence
We use this equation to calculate theoretical estimatgs, of of, for example, crossovers and finite size cutoffs can sub-
denoting them by3. Since direct measurement ¢f is a  Stantially degrade the level of precision attainable. The

significantly more robust exercise than determiningrom ~ Method of measuring exponents we use here is based on
P(r), we employ Eq.(4) in estimatinge in the following ~ €Xamining a smoothed version of the derivative of the distri-

section. bution as viewed in double logarithmic spa@milar ap-

We note that an alternative approach to prediciihépr proaches are to be found .in Re[Q,lQ]). For example, for
hyperspheres is due to the Andrienkov, Brilliantov, and®(n), we perform regression analysis on jgf(n) versus
Krapivsky (ABK) model[3,4]. For hyperspheres, compari- logign over a sliding, variable W|dth vylndow .of \{alues of
sons between the scaling theory summarized in this papaP9ion- Writing the upper and lower limits of this window as
and the ABK model may be found in Réfl]. As yet, how- 1091011 and loggn,, we havew=log,gn,/n, being the
ever, we see no clear method of extending the ABK model t¢Vidth. In general, depending on the number of orders of
account for the growth of irregular objects; doing so wouldMagnitude spanned by the data, we would preferably choose
require incorporating a closed form solution for interobjectW in the range 0.5w=3. Here, we fixw=1 and calculate

collision times, or at least suitable approximations thereof. the “local” exponent(n,) for each window. We find in all
cases thap(n,) tends towards a constant value. This indi-

IV NUMERICAL RESULTS cates that the scaling law is robust and further allows us to
estimateB along with an error based on the fluctuations ob-
For each shape, we generate statistics for single packingserved fors(n,). Measured values af and g are recorded
with 10° objects. Some example distributions taken fromin Table I.
rectangle packings for=1, 10, and 100 are shown in Fig. As we have noted above, our scaling theory approach
3. The distributionN(r) is the un-normalized frequency dis- appears to be exact fal=4 dimensions in the case of hy-
tribution corresponding td>(r). In the case of plain rect- perspheres and an overestimate of the true value fofr d
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3 & APPENDIX A: SHAPE PARAMETERS FOR MEAN FIELD
a CALCULATIONS
2.9 o . . .
E In this section, we derive the formulas for the area and
2.8 perimeter of irregular objects id=2. For general rect-
3 O angles, we have area given by

2.7 + )

# O Arec= 41/ a, (A1)
2.6 .

0] and perimeter as
2.5

0 0.5 1 1.5 2 Liec=4(1+ 1/a)r. (A2)

log 10 @

Using Eq.(3), we therefore have the mean field estimaterof
FIG. 4. Measured values of as a function of aspect ratmand ~ for rectangles as

shape. The symbols correspond to distarcles, rectangles

(squarey crosses(plus sign, six-spoke (hexagon, and eight- ~ 2

pointed starasterisk. Qrec= 3~ 5133’ (A3)

. where writing the result in this fashion makes plain the lim-
<4. We therefore do not expect the scaling theory to be g P

correct for nonspherical objects éh=2 dimensions. Indeed, ''"9 value of ajeq=3 for a—ce. For the 2-spoke objects
, ) A described above, area grows as

in all cases, we observe the theoretical estinaaie an over-

estimate of the measured. This direction of error makes Agn.spoke= 2n/a*(2a—cotar/2n)r?, (A4)
sense in light of the scaling assumption made by(Eg.The . o

actual form ofP;.((r;n) is not precisely uniform but rather and perimeter is given by

rolls over less steeply than a step function aroumser ..

Given the manipulations that lead to E8), it can be argued Lon-spoxe=4n/a(a+1—cotm/2n)r, (AS)
that = a must hold[1]. leading to the estimate

In Fig. 4, we show howx varies as a function of both
aspect ratica of the constituent rectangles and the object’s 5 _13+9a—(9+2/a)cotm/2n (A6)
particular shape. The strongest influence is evidently the as- 2n-spoke™ 5 4 33— (3+ 1/a)cotm/2n

pect ratio witha varying from 2.564(disks,a=1) up to 3 ]
(rectanglesn spokesa=c). We observe a secondary effect Note that f_orn= 1, we recover the result for rectangles in
due to the details of the shape. Square and the eight-pointdcf- (A3). Finally, for the eight-pointed star we have

star packlngs have a valugmflncreased above that of disks. Acight poin= 22+ (1—tanw/8)2]r2, (A7)
Cross packings have a higher valuesthan do rectangles
with the same aspect ratio. and
Leight point— 16(1_ tan ’7T/8)r, (AS)
V. CONCLUDING REMARKS which yields
We have extended a model describing the interaction of

growing disks[1] to the problem of growing irregular and ~ _42—40tanm/8+2 tarf /8

Qeight poinf— =11/4, (A9)

anisotropic objects. In this model, the exponent characteriz-
ing the size distribution of objects is found to be independent
of growth dynamics. However, the main result presentedhe same as for disks and squares.

here is that the exponent is highly shape dependent, adopting

a continuous range of values 2.564<3. Ultimately, un- APPENDIX B: RECTANGLE COLLISIONS
derstanding how geometry impacts on the structure of plant _ ) )

communities will require imposing a notion of packing- e describe an arbitrary rectangle in tkey plane as
limited growth onto a reasonable set of dynamics. The result®!lows. The sides of the rectangle are and /a, where

here demonstrate that in doing so, we must keep in mind thdt™ 0 is half the length of the long side of the rectangle and
shape matters. a=1 is taken as the aspect ratio. The rectangle is centered at

(X0,Yo) and rotated at an angleé. We takeé as the angle
between the direction of the positixeaxis and the short axis
of the rectangldi.e., parallel to the side with lengthr2a),
so that 0= 6<r.

P.S.D. acknowledges the support of the Columbia Earth A rectangle described byr(a), 6=0, and &p,Yo)
Institute. =(0,0) satisfies the equation

15— 14 tanw/8+ tarf«r/8
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ax a 0][x Parametrizing the sides of an arbitrary rectangle gives the
ma% =max|g 1||y||=r- (B1) following:
[%o| [—sin@] | [coso
This is a remapping of a rectangle into a square of side Y= Yo 1 cose +E sing | (B8)
length . For an arbitrary rectangle, we can map it onto a L
basic square by recentering it at the origin, removing the o i i
rotation, and undoing the dilation by the aspect ratio X| | Xo siné rt | COSH
= +r| — +—| gi (B9)
cosd siné |-
a 0| cosf sinf || x—Xq y _yo_ L i a L ]
max|o 1|| —sind cos - =r. (B2 o o
no o11y=Yo Xo| . [cose —siné
= +—| g +rt (B10)
. . . siné cosé |
Therefore, to determine whether or not an arbitrary point _y_ _yo_ a
(x,y) lies on or within a given rectangle, we need to check
whether or not X Xo| | —cosé —sing
) = +—| _qj +rt . (B1)
a 0][ cosd sind][x—xg y Yo| " a| —sind cosd
maxio 1| —sind cosé||y—vyol|l = ) i . :
The first two equations describe the short sides and the latter

two describe the long ones.
In packing growing rectangles, the above is used to check if Using Eq.(B7) in Egs.(B8)—(B11), we respectively have
a newly seeded rectangle has been placed in pore space agight possible solutionéwo for each sidg
not within an existing rectangle.

For a rectangle that passes this test, the next calculation is —(Yyptrcosf)*=a(xo—r sing)
to determine how large it may grow preserving its aspect - r/asinf=r cosd ' (B12)
ratio and orientation, so that it just reaches an existing rect-
angle. _ _ . —(Yo—Tr cos@) +a(xo+r sing)
To do this, we consider one arbitrary rectangle that does t= Tasings g , (B13)
not cover the origin and find the size of the largest rectangle rrasint-=rcos
centered at the origin with the short side along thaxis 1 Jasing) + /
such that the rectangles just touch. We will then generalize to = _ a(yotr/asin 0)—(%04” a coso) (B14)
any configuration by appropriate rotations. r/acosf=rsing '
First, the “growing” rectangle could hit the already exist-
ing one at any of the latter’s corner points. The four corner . —1/a(yo—r/asing) = (xo—r/acos6) (815
points are given by B rlacosf=r sind '
Xo *1/acosf—sing Each of these has to be tested to see lfi<t<1. If so, then
yo| 1| +1/asing+cosd|- (B4)  upon substituting the values o¢fdetermined in Eqgs(B12)
through(B15) into Egs.(B8) through(B11), we have
Xo Facosf+sing _ (Xesin#—yecos6—r) 816)
vol 7| Fasin6—cosé |- (B5) - sinf¥acosd '
) o (XpSin@—yocosh+r)
The other possible collisions are between the corners of = = 0 , (B17)
the added rectangle and the sides of the existing rectangle. sing+acos
There may be 0, 1, 2, 3, or 4 such intercepti¢h®r 3 if the ,
rectangles touch at corngrsTo calculate these points, we e (XoC088+yosinf+r/a) (B18)
parametrize each side of the existing rectangle and find the cosf*=asiné '
interceptions withy=*ax. For an arbitrary line segment
described b XoCO0SO+Yyosind—r/a
y - (Xo Yo . ) , (B19)
cosf+asing
x=b;+b,t and y=c;+c,t, (B6)

wherey= *ax in all cases.
We are now able to write down how to determine the size
—c.tab of the largest rectangle that may fit in, given it is centered at
t= 2 (B7) the origin with an anglep and there is one other rectangle
co+ab, already present axg,y) oriented at an anglé.

with —1<t=<1, the intersection witly= *ax occurs when
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(1) Determine whether or not the new rectangle liesdiagonals of the new rectangle exist by calculating Egs.
within the old one using EqB3). (B12) through(B15).

(2) If it is not enclosed, rotate the coordinate system by an (5) Each value oft which satisfies—1<t=<1 is a valid
angle ¢, so that the central rectangle sits square with thdntersection point. The positions of all such points are then
axes. All that needs to be done is to move the existingaken from Eqs(B16) through(B19) along withy= +ax.

rectangle from Xg,Yo) 10 (COS@Xo+Sin ¢yy,—Sin Xy (6) For each valid X,y) pair, calculate maxdx,|y|) to
+cosg¢yy), and change its angle of rotation t6' =6 obtain the half width of the shortest side of the rectangle
— ¢(modm). centered at the origin that passes through the point)(

(3) Find the position of the four corner points using Eq. Take the minimum over all such values to find the half width
(B4) with 0 and {,Yg)- of the shortest side of the actual largest rectangle that may be

(4) Determine which, if any, intersection points with the inserted without overlapping.
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